
Generating Year-Equivalent 
Databases of Fractally Synthesised 

Rain Rate Fields

Sarah Callaghan
STFC – Rutherford Appleton Laboratory

Radio Communications Research Unit, Chilton
Didcot, OX11 0QX, United Kingdom

Email: s.a.callaghan@rl.ac.uk



Introduction

• Bandwidth-hungry devices (such as 3G mobile) create pressure to 
improve spectrum efficiency and open up new frequencies to 
commercial exploitation.

• Radio systems operating at frequencies above 10 GHz are 
adversely affected by rain and cloud.

• This attenuation cannot be compensated for effectively and cost- 
efficiently through the use of fade margin alone.

• Hence, the use of Fade Mitigation Techniques (FMT)

One popular type of FMT is spatial diversity, which takes advantage 
of rain changing in time and space. To optimise systems using this 

FMT, we need to know about this rain field variation.



Example radar map of the UK derived 
from the Met Office Nimrod radar data

Measured rain radar data

The Met Office have a database of 
rain radar measurements available 
which is composite rain radar data on 
the Cartesian national grid.

Space resolution: 1/2/5km hybrid
Time resolution: 5 minutes

Database starts in April 2004.

Before that, composite rain radar data 
is available on a space resolution of 5 
km * 5 km and at a time resolution of 
15 minutes.

Unfortunately, this temporal/spatial 
resolution is not high enough for a lot 
of radio communications applications.



Requirements for a rain model for 
use by radio system engineers

Bacon, 2005 (http://www.rainmap.rl.ac.uk/pdfs/jan2005_workshop/Bacon.pdf)

A physically-based rain model should:

• have a time resolution of 1 s
• have a spatial resolution of about 100 m
• be able to take inputs from a weather model
• be suitable for use in spectrum management and simulation 
software
• be capable of generating databases which replicate average 
annual statistics



Rain Field Simulator

The fractal nature of rain fields 
is well documented in the 
literature. 

The simulator presented here 
is based on the Voss 
successive random additions 
algorithm for generating 
fractional Brownian motion in 
two dimensions. This is an 
additive discrete cascade, 
producing log, monofractal 
fields.



What is a fractal?

Mandelbrot set Romanesco broccoli 

A fractal is an object that is self-similar on many different scales. Fractals can be 
exactly self similar, or statistically self-similar.

Real world examples: trees, ferns, broccoli.



Example simulated rain 
fields

Example simulated stratiform rain field. Example simulated convective rain field.

Each run of the simulator produces a single realisation of a stratiform-like or a 
convective-like rain field. These realisations are independent of each other, hence 

there is no temporal component to the model (work is ongoing).
However, given enough synthetic fields we can create simulated statistics for an 

average year. 



Proportion of stratiform/convective 
events in a year (1)

To create simulated statistics for an average year, we need to know the 
proportion of stratiform and convective events in a year. 

Rec. 837 has data files associated with it containing parameters such as grids 
of latitude, longitude, etc.

Two of these parameters, Mc and Ms , aren’t defined in the recommendation 
text, but a bit of digging reveals that:

Mc = annual average convective rainfall amount (mm)
Ms = annual average stratiform rainfall amount (mm)

For Chilbolton, Mc =120mm and Ms =593mm.

In other words, 16.8% of the total rain accumulation rain falling at Chilbolton is 
convective and  83.2% is stratiform.

Use these values to determine the mix of stratiform/convective events to create 
an average year.



Assuming spatio-temporal 
equivalence, we use the stratiform 
and convective rain fields in 
proportion as given by Mc and Ms . 

Simulated gauge curve is scaled 
to R0.01

This gives good agreement along 
most of the length of the 2 curves.

This also suggests that if we 
simulated an entire year’s worth of 
2D rain fields in the proportions 
given by Mc and Ms and scaled 
them to R0.01 then the resulting 
statistics would be consistent with 
the ITU model.

Proportion of stratiform/convective 
events in a year (2)



Results of simulations for 
different locations (1)



Results of simulations for 
different locations (2)



Moving to annual statistics

We want to test the statistics produced by the simulated fields, especially 
with reference to the spatial correlation. 

• Assume that each simulated field is a snapshot at any given minute:
• Need 43,200 arrays for a month (30 days)
• Need 525,600 arrays for a year

Considering that each convective array is 8,328 KB and each stratiform 
array is 16,419 KB, that’s a lot of data. 

525,600 arrays would weigh in at ~6,150 GB and would take ~ 40 days to 
create.

That’s a lot of simulation!



Simulating the tail of the annual 
distribution

Most radio system designers use ITU-R recommendations to produce the rain 
cumulative distribution curves that are used to determine system availability.
We want to create a subset of 2D events which will accurately reproduce the 
tail of the annual ITU distribution and still keep accurate spatial statistics.

We therefore use 526 simulated arrays (equivalent to 0.1% of a year - 
assuming each array is equivalent to 1 radar snapshot/minute). We can then 
fit this dataset to the ITU Rec. 837 values in the range 0.1% to 0.001% 

To fit to the tail of the annual ITU distribution, we need two new parameters, a 
and b.

where:
Rsim is the simulated rain array (mm/hr)
V is the data array produced by the simulator
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Simulating the tail of the annual 
distribution – a and b

a is given by:

where:
RGA is the simulated rain gauge data extracted from V (equivalent to log values)
IR≤0.1 is the rainrate exceeded for percentages of time less than 0.1% (from Rec 

837)
mGA is the mean of RGA
std is the standard deviation
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The parameter a modifies the standard deviation of the simulated distribution to fit in with 
the (tail of the) ITU distribution.

Finally, the simulated curve needs to be offset to match the ITU curve.

Hence, the parameter b:

Where IR=0.1 is the rainrate exceeded for 0.1% of the time (from Rec 837)

)(log 1.010 == RIb



Simulating the tail of the annual 
distribution – sample a and b 

values

Location Latitude
(- for deg. 
S)

Longitud 
e 
(- for deg. 
W)

Mc
(from 
Rec. 837- 
5)

Ms
(from Rec. 
837-5)

a b

Chilbolton 
(England)

51.1333 -1.4333 158.23 581.29 3.2266 0.9106

Cairo (Egypt) 30.05 31.25 12.7983 45.8753 1.6580 0.1467

Prague (Czech 
Republic)

50.1 14.4333 149.2240 491.2206 2.3112 0.9372

Buenos Aires 
(Argentina)

-34.6667 -58.5 164.8082 868.3786 2.5511 1.0789

Jakarta 
(Indonesia)

-6.1333 106.75 1580.3 820.9559 4.4872 1.6714

Delhi (India) 28.6667 77.2333 322.6315 323.6087 2.5390 1.1243



Simulating the tail of the 
annual distribution - results

Results after scaling with a and b.
For Chilbolton data, a=3.2266 and b=0.9106

Figure shows the ITU Rec 837 
curve for percentage times less 
than 0.1%, in comparison with the 
measured Chilbolton and 
Sparsholt annual curves (Jan 05- 
Dec 05) and the cdfs for simulated 
rain gauges A and B (7.5km 
apart). 

The cdf of A has been scaled 
using parameters a and b to fit it 
to the ITU curve. The cdf of B 
uses the same a and b, but isn’t 
as closely tied to the ITU curve.

There is good agreement of the 
simulated curves with the ITU 
curve for % values less than 
0.05%



Simulating the tail of the 
annual distribution – results 

for different locations (1)



Simulating the tail of the 
annual distribution – results 

for different locations (2)



• Double checking the correlation factor of simulated fields (scaled by a and b 
to fit the tail of the ITU distribution) reveals that it falls off slower  with distance 
than the measured data (on a pixel by pixel comparison)

• Comparison with small scale measurements shows that if we assume that a 
simulated pixel is 100m*100m, then the spatial autocorrelation in the simulated 
data falls off too slowly. If we assume that 1 simulated pixel is equivalent to 
50m*50m, this corresponds better with the measured data.

• Overall, when the arrays are scaled to fit the tail of the ITU distribution, the 
simulated fields become more correlated. This makes sense, as we’re altering 
the standard deviation of the simulated fields, pushing the spread of simulated 
values closer together.

• Tweaking the pixel size will make the spatial correlation more consistent with 
reality, but will reduce the total area covered.

Spatial correlation of scaled 
simulated rain fields



2D autocorrelation comparisons: R0.01

Simulated stratiform 
field R0.01 =36.5mm/hr 

Simulated convective field R0.01 = 36.5 mm/hr

Spatial point- and area-correlation function 
estimated from gauge-rainfall fields, and the 
uncertainty bound for the area-correlation 

function. Also shown is the correlation function 
estimated from radar-rainfall fields. 

[Gebremichael et al, 2004]

Simulated stratiform field R0.01 = 36.5 mm/hr



2D autocorrelation comparisons: a & b

Simulated convective field a=2.3765, b=0.9711

Spatial point- and area-correlation function 
estimated from gauge-rainfall fields, and the 
uncertainty bound for the area-correlation 

function. Also shown is the correlation function 
estimated from radar-rainfall fields. 

[Gebremichael et al, 2004]

Simulated stratiform field a=2.3765, b=0.9711



Conclusions
Results suggest that if we simulated an entire year’s worth of 2D rain fields in 
the proportions given by Mc and Ms and scaled them to R0.01 then the resulting 
statistics would be consistent with the ITU model.

This is not practical, due to computer memory and processing time constraints.

The parameters a and b allow us to scale cdfs of the simulated rain fields to  
the ITU model for rain rate cdf, for the tail of the ITU distribution, i.e. time 
percentages less than 0.05%. 

The simulated database required to do this has 526 arrays, in the 
stratiform/convective proportions given by Mc and Ms .

Comparison of the scaled simulated and ITU modeled cdfs are in good 
agreement for the tail of the ITU distribution (note for the single site of 
Chilbolton – potential future work is to test the algorithm with other locations).



Caveats
Results seem to suggest that this method of scaling works. There are a few 

caveats:

1. Tails of distributions are never that well defined, due to the limited numbers 
of data points that create them. Hence, fitting simulated data to the tail of 
the ITU model carries some risk, and relies on the ITU model accurately 
reproducing the behaviour of the measured statistics.

2. To fit the simulated data to the tail of the ITU model, we’re not only 
adjusting the mean of the simulated data distribution, we’re also changing 
the standard deviation. This unfortunately affects the spatial correlation, but 
can be mitigated by adjusting the equivalent pixel size to make the spatial 
correlations more consistent with reality. Doing this impacts the total area 
covered by the simulated field.

3. After scaling, the simulated cdf percentage values only map to the ITU 
curve for percentage values less than 0.05%



Future work

Expand the model to take into account the vertical variation 
of rain fields, allowing it to be applied more accurately to 
satellite system planning. 

Introduce an accurate method of simulating the temporal 
variation of the field (evolution and advection of the rain 
cells). 

Further investigations with measured rain field data into the 
spatial autocorrelation of rain fields on different scales, 
in different locations and using different spatial 
resolutions should be carried out. 
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